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The limiting properties of subcritical and critical (with Mach numbers M < 1) piane-parallel jet streams are investigated in the 
approximation of an ideal (inviscid and non-heat-conducting) gas. Chaplygin’s equation is used with the pressure and the angle 
of inclination of the velocity as the independent variables, which are measured from the limiting values corresponding to the 
cross-section of the equalizing of the jet with respect to these variables. The stream function in the neighbourhood of the “equalizing 
cross-section” is represented in the form of an expansion in powers of the “distance to the origin of the coordinates” (in the 
plane of the independent variables) with coefficients which depend on a previously unknown combination of the independent 
variables. The limiting property of the flow, i.e. the position of the equalizing cross-section at a finite of infinite distance, is defined 
by the leading terms of the expansion. A symmetric potential jet and symmetric piecewise-potential jets flowing out into a 
submerged space in the case of subcritical and critical pressure drops are considered as examples. The critical pressures of the 
potential parts of the composite jet can be different or identical (including when the thermodynamic properties of the gases are 
different). 0 2003 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Following Chaplygin [l], a change to the value V and the angle of inclination 8 of the velocity vector 
V as the independent variables, and the stream function w, the potential and the Cartesian coordinates 
x andy as the dependent variables is widely used in problems of plane-parallel potential jet streams of 
an ideal gas. In a number of problems with impermeable boundaries consisting of rectilinear segments, 
the resulting linear equation for v, with coefficients which depend solely on V(“Chaplygin’s equation”), 
admits of separation of the variables and a solution as a whole in the form of infinite series [l-lo]. 
However, in such cases, quite often a complete solution of a problem cannot be successfully obtained 
since, in the cases of gases with real thermodynamics, the equations for the infinite set of functions 
which depend on Vcan only be integrated numerically. Even in the case of a perfect gas with constant 
heat capacities, for which these functions turn out to be well-known solutions of the hypergeometric 
equation, the summation of the corresponding series is an exceedingly complex problem (see [8] and 
[9, pp. 228-2341). 

It is simpler to investigate the limiting properties of the above-mentioned flows by which we mean 
the position of the equalizing cross-section of the jet parameters because, in order to do this, calculation 
of the sums of the corresponding series is not required, but only an investigation of their convergence 
or divergence. In fact, it has been proved in [l] that, for a subcritical pressure drop (the pressure in 
the submerged space is higher than the critical pressure of the jet) in the case of a perfect gas, the 
equalizing is of an asymptotic character, as in the case of an incompressible fluid. It has been shown 
(21 (see also [4]) that subcritical jets of an arbitrary barotropic gas possess the same property. 

Whereas the asymptotic character of the equalizing of subcritical jets is natural, the equalizing of a 
critical jet in a straight sonic line at a finite distance from the se’ction of the nozzle, which was established 
for the first time in [3], turned out to be unexpected. This property was obtained [3] for a perfect gas 
in a problem which permitted separation of the variables as a consequence of the convergence of the 
corresponding series. An extension of the result in [3] to an arbitrary barotropic gas, carried out in [2], 
was presented in [4]. Using the same method, the result in [3] was extended [5, 8-101 to the case of a 
sonic jet of a perfect gas flowing over wedge-shaped obstacles. In this flow problem, two straight sonic 
lines are formed bounding the finite domain of subsonic flow from above and from below along the 
stream. Note that the rectilinear@ of the sonic lines in two-dimensional (plane-parallel and axial- 
symmetric) potential flows with M G 1 also follows from a theorem proved in [ll] (also, see [12]). 
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Below, in a development of the results which have previously been obtained 1131, a method for 
investigating the limiting (equalizing) properties of plane-parallel potential and piecewise-potential jets 
is described which is simpler than the analysis of the convergence of the series. The velocity is disrupted 
at the tangential discontinuities, which separate the piecewise-potential jets. Chaplygin’s equation is 
therefore used in a form in which the modulus of the velocity I/is replaced by the pressurep. The method 
rests on an analysis of the structure of the solution in the neighbourhood of the singular point in the 
plane of the independent variables, p and angle ti = -8, which corresponds to the equalizing cross- 
section. This analysis leads to an ordinary differential equation which is integrated in quadratures. It 
is not necessary when using this method that the problem as a whole should allow of separation of the 
variables nor that the gas should be a perfect gas. 

2. STRUCTURE OF THE SOLWTlON IN NEIGHBOURHOOD OF 
THE SKNGULAR POINT. HOMOGENEOUS POTENTIAL JET 

Consider a plane-parallel jet of an ideal gas which flows out of a nozzle (Fig. la) into a submerged 
space with a pressurep,. The form of the jet is quite arbitrary, apart from the existence of a plane of 
symmetry and the absence of segments of generatrices, around which a flow could give rise to local 
supersonic zones with d&continuities which upset the isentropic character of the flow. As in Fig. l(a), 
the nozzle can have internal walls. In the case corresponding to Fig. l(a), two jets of, generally speaking, 
different gases with distinct stagnation enthalpies N and specific entropies S flow over the plane of 
symmetry along which we direct the x axis of the Cartesian coordinates x andy. When H and S for each 
jet are homogeneous, the flow in them is a potential flow. This enables us to change to the variables I’ 
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and 8, where 8 is the angle of inclination of the velocity vector to the x axis. In these variables, for an 
arbitrary two-parameter gas; the stream function satisfies Chaplygin’s equation [7] 

v2yrvv + v( 1 + M2& + Cl- M2Wee = 0 (2.1) 

and the equality 

&(Vt+rVcosO-\y,sinB)dO (2.2) 

holds for the differential dx. 
In Eqs (2.1) and (2.2), all the variables are dimensionless. In the reduction to dimensionless form, 

we took&, V& andp,“/(V&)’ as the scales of pressure, velocity and density. Dimensionless quantities 
are labelled with a “degree symbol”, critical parameters (the critical velocity here) are labelled with an 
asterisk subscript and the jet parameters, which are numbered from the plane of symmetry (K is the 
number of piecewise potential jets), are labelled with the subscripts k = 1, . . . , K. Since the pressure 
scale, the pressure in the submerged space p,“, is the same for the whole flow, the velocity and density 
scales for each jet have no effect on the fields ofp and 13 = -8 which are subsequently important and 
continuous at the tangential discontinuities. The additive constant and the normalization factor which 
are permissible when introducing the stream function are chosen such that, for w = QJ@, tY>, 

WP, 0) = 0, WI, 6) = 1 (2.3) 

which has taken account for the fact that p = pe = 1 on the boundary of the jet with the submerged 
space. 

The equations and conditions (2.1)-(2.3) not only hold for a flow which is piecewise-homogeneous 
with respect to N” and S” and, as a consequence of this, potential flows but, also, for those substantially 
inhomogeneous flows which reduce to homogeneous or to piecewise-homogeneous flows. In the 
problems being considered, according to well-known results [14] (also, see [15]), this is a jet of a perfect 
gas with a stagnation enthalpy H” which depends on \I’ and, consequently, I$ = V;(v) also in the case 
of a constant or piecewise-constant critical pressure pz. In the case of such flows, when the pressure, 
velocity and density scales are chosen in a similar way (with its own I’; in each streamline), the equations 
of motion for the dimensionless (without “degree symbols”) and dimensional parameters, written for 
the independent variables x and y, only differ in the presence of the “degree symbols” as in the case of 
homogeneous flow. The condition for the flow to be potential flow is obtained from them as a consequence 
of the constancy of the now dimensionless H and S. In the case Iof a perfect gas with an adiabatic exponent 
K, after changing, as described above, to dimensionless quantities, H = (K + 1)/[2(~ - ‘I)], and the 
constancy of S is equivalent to the constancy of the relation 

p/pK = p*/p; = = K-“(p;/pyK = -IE l-K 
K P* 

In connection with problems of the efflux of piecewise-homogeneous jets, we change from V top, 
taking account of the fact that, in each homogeneous jet, p is solely a function of V, dp/dV = -pV and 
d2p/dV2 = p(M2 - 1). Furthermore, we replace 8 d 0 by 6 = -8 3 0 in Eqs (2.1) and (2.2). After this, 
we have 

yl,,-aylr,+p21& = 0, a = 4, p2 = 1-M2 
PV p2v4 

dx = 
sin6 pvwp - p=Vy~,+os^g dp + (Vy~~cosB + $yf*)dB 

(2.4) 

(2.5 ) 

A certain domain of the plane A, 19 with A = p -pe = p - 1 corresponds to the upper half of the 
potential and piecewise-potential jets escaping from the convergent nozzles of the type shown in 
Fig. l(a). In the general case, when the whole of the boundary of this domain is unknown, it is subsequently 
only important (Fig. lb) that the abscissa (19 = 0) should correspond to the jet axis and that the ordinate 
(A = 0) should correspond to the boundary with the submerged space. According to conditions (2.3) 
v, = 0 on the abscissa and \v = 1 on the ordinate. Hence, the origin of the coordinates A = -9 = 0, 
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which corresponds to the cross-section of the equalizing of the jet with respect to pressure and the 
direction of the velocity in the X, y plane, is the singular point at which all the streamlines with 
0 d v 4 1 arrive. In Fig. l(b), the points b, e, . . . correspond to the same points of the X, y plane in 
Fig. l(a), the unknown segments of the boundary of the flow are given by the dashes, the flow boundaries 
and the solid curves are the streamlines in which w = const. and the heavy line is the streamline 
separating the homogeneous jets. The nature of the equalizing is determined by the behaviour of the 
streamlines in the neighbourhood of the origin of the coordinates. The streamlines in this neighbour- 
hood are not shown in Fig. l(b). Two versions of the approach of the streamlines to the origin of the 
coordinates are depicted in Fig. l(c, d). 

Suppose F = S(A, S) is the distance to the singular point, which has been determined by some method 
or other. Then, in the neighbourhood of this point, it is natural to seek v(A, 19) in the form 

w = wo(x)+~1(x)6+w2(x)S2+ ~.., x = *A-’ (2.6) 

with an unknown exponent n. In using this expansion, it is necessary to distinguish between the cases 
of the escape of subcritical jets Cp* < M, < 1 and Pe > 0) and critical jets (p* = 1, M, = 1 and l3, = 0). 

On substituting expansion (2.6) into Chaplygin’s equation in the form of (2.4) and taking account of 
the smallness of 6 and A, we arrive at the equation 

@ZX2 + p;A2U -n) >w; -I- n(n + I)x& = 0 (2.7) 

for the “subcritical” jets in the leading orders with respect to 6 and A. 
We now consider different cases. At the singular point A = 0 and, close to it, A + 1. By virtue of this, 

certain terms in Eq. (2.7) can be neglected depending on the value of ~1. In accordance with this, when 
M, < 1, the solutions (Ci and Cz are integration constants) 

are possible for Eq. (2.7). 
In the case of a homogeneous jet, x varies from zero (on the jet axis, that is, on the A axis of the A, 

8 plane) to infinity (on the jet boundary, that is, in the 13 axis of the same plane). The solution (2.8) 
with n = 1 therefore corresponds to a finite change in v. and w, and, taking account of conditions (2.3), 

l+fo = $rct,$ e, x=2 (2.9) 

Figure l(c) corresponds to this solution. 
In the case of critical jets for whichp, = 1, M, = 1 and pe = 0, expanding p = P(A) with respect to 

A, we write Eqs (2.4), with an accuracy which is sufficient in what follows, in the form 

‘Aye* = 0, a, = 2 = ?, = 4(K+ 1) 
P* K 91c3 

(2.10) 

Here, the factor of 3/2 in the brackets is introduced in order to simplify the subsequent formulae, 
and the second expressions for a, and q2 correspond to a perfect gas. Similarly, the expression for dx 
changes in the case of critical jets. Now, instead of expression (2.5) we shall have 

Substitution of expansion (2.6) into Eq. (2.10) leads to the equation 

9 2 n2x2 + iq A $+r(n+l)x& = 0 

(2.11) 

(2.12) 
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Hence, as earlier, we find that, whenp, = 1 and M, = 1 

v, = c,~(x,~x~c?)+c,~ Z(a, b, c) = j d’z 5,6, n = ; 
.(C2+c ) 

(2.13) 

In the case of a homogeneous jet, a finite change in v. and w gives a solution (2.13) with IZ = 3/z and, 
when account is taken of conditions (2.3) 

I(09 x9 4) 19 vo = Z(0, 00) q)’ x = p (2.14) 

Figure l.(d) corresponds to this solution. 
In order to find the abscissa X, of the cross-section of the equalizing of a potential (homogeneous) 

jet, we substitute expansions (2.6) and solutions (2.9) or (2.14) into expression (2.2), we retain the leading 
terms with respect to A and 6 and integrate the resulting equation from a certain, “initial” cross-section, 
which is sufficiently distant from the nozzle section with respect to A from A0 to A + 0 when 0 = 0 or, 
with respect to 6, from fro to 6 3 0 when A = 0. Parameters in the chosen initial cross-section are 
labelled with a zero subscript, and integration when 1.9 = 0 gives x, in the plane of symmetry of the jet 
and, when A = 0, on its boundary. In order to determine the limiting ordinate of the boundary,y,, that 
is, the half width of the equalized jet simultaneously with the calculation ofxe,, we integrate the equation 
of a streamline 

dy = (tg6)dx = 6(dxld6)dfi 

with respect to 6. At the same time, h/d19 is a calculated from Eq. (2.11) with dp = 0 and with solutions 
(2.9) or (2.14) for the stream function. Finally, we find that, in the case of a subcritical jet 

xe = ,ro-iV p lim 1nA = x0 
e =A+0 A0 (2.15) 

and, for a critical jet 

9 9 
xt? = Xo + 2Z(O,~, q) = +I + 21(0, w, q) 

lY~<cQ 

9 4/3 
(2.16) 

Ye = Yo- gZ(O, m, q?’ 

The known properties of potential, plane-parallel jets of an ideal gas, which have already been 
mentioned, follow from formulae (2.15) and (2.16): asymptotic equalizing in the case of subcritical 
pressure drops (pp < 1) and equalizing at a finite distance in the case of a critical drop (p* = 1). 

The first formulae for the coordinate x,, (2.15) and (2.16), g ive it in terms of the pressure on the jet 
axis and the second formulae give it in terms of the angle of inclination of the boundary. According to 
formula (2.15) and the formula for dy preceding it, the relations 

A 6 - = -, 
A0 60 

2v p (i$-fi2) y=yo--, e e (2.17) 

are satisfied in the case of subcritical jets on 
6 4 1). 

Similarly, in the case of critical jets 

the infinitely long equalizing segment (when Ao, A, ~9~ and 

A&O- h = (;)“‘- (;)‘13, X = X0 + 2zcop-, q,($)“3(Al” _A112) = 
(2.18) 

9 9 
= x0 + 2/(O,w, q) 

(6~-lv3), y = Yo-8/o(#3-'94'3) 
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Formulae (2.17) and (2.18) in the equalizing segments (A < A0 4 1 and 6 < t9a <c I) of infinite or finite 
extension associate the coordinates X, y, x0 and y. of the jet boundary with the angles of its inclination 
0 and fiO, the abscissae x and x0 of the jet axis with A and A0 in it and, finally, 13 and 60 in the boundary 
with A and A0 on the axis. The relations indicated are universal as they do not depend on the form of 
symmetry of the nozzle. In the case of subcritical jets, the relation between 19 and flo on the boundary 
and A and A0 on the axis is also independent of the gas properties. 

If an inlet channel has a cylindrical part, then, for large negative values of X, solution (2.8) with 
n = 1 andwithb =p-pf also describes the flow in it. Here, the abscissa of the equalizing cross-section 
xj-+-“. 

Solutions (2.8) and (2.13) were also obtained in the case when, in expansion (2.6), one takes 
x = 13/f(A) instead of x = IYA with a functionf(A) which is unknown in advance, satisfying the condition 
f(0) = 0. By virtue of this condition, as before x = ~0 on the boundary of the jet and x = 0 in its plane 
of symmetry. In this case, for subcritical jets, Eq. (2.7) which determines vo(x), is replaced by 

<x”fl’ + p&; f (2f12 - ff” + a,ff’)x& = 0 (2.19) 

Putting 
Jf” = @2 (2.20) 

we will investigate how the choice of the constant k affects the solution of Eq. (2.19). On integrating 
Eq. (2.20) we find that its soIution satisfies the conditionf(0) = 0 only for --oo < k < 1. At the same time, 

f = A”, n = $_._, ft = no*-‘, f I2 = n2A2@-‘), f” = n(n- l)Anw2 

Hence, for different permissible values of k and, consequently, also ~1, “power” x = rY/A” and the 
previous solutions (2.8) and (2.13) are obtained. 

3. EQUALIZING PROPERTIES OF PIECEWISE-POTENTIAL JETS 

When considering two jets (Fig. la) with differing critical pressures and gas properties (the adiabatic 
exponents K in the case of perfect gases) their parameters, according to what has been said above, are 
labelled with the subscripts 1 and 2. Each jet is homogeneous with respect to the total enthalpy and 
entropy (or it is reduced on a homogeneous jet using the technique described above). The flow in them 
is therefore potential. The boundary of the jets is a tangential discontinuity in which the x and y 
coordinates, the stream function w, the angle 6, the pressurep and A = p -pe = p - 1 are continuous. 
The tangential discontinuity is a streamline of both jets. In the A, 6 plane, they are identical and, 
consequently, when expansions (2.6) are used in a small neighbourhood of the origin of the coordinates, 
the solutions for w of the two jets must be identical in the line IYA” = Xb. Variables at the tangential 
discontinuity will henceforth be labelled with the subscript b. Therefore, if the zeroth terms of expansions 
(2.6) for the two jets, that is, vol and voo2, are non-zero (the meaning of this stipulation will become 
clear later), they must be functions of the one and the same x and YIP = ~1~ = n. 

So, the conditions 

(3.1) 

with a specified constant m, 0 G m 5 I, are satisfied on the boundaries of the jets. The last equality in 
(3.1) is the condition for the continuity of the coordinate x at the tangential discontinuity. When it is 
satisfied, the continuity of the second coordinate follows from the continuity of 19 and the equality (the 
tangential discontinuity is a streamline) 

dyldx = tgt3 = -tg6 

We now consider different situations. 

Both jets are subcritical. In this case,p, 1,p*2 < pe = I and, of all the solutions (2.8) and (2.13) giving 
bounded ~1 and u/~, only the solution (2.8) with n = 1 is valid. In the case of this solution, (&/dp)b = 
Xb at the tangential discontinuity. Hence, from relations (2.5) and (2.8) we obtain 
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(3.2) 

Taking account of this, from the last condition of (3.1) we find 

CJL”e2 = C,rP,, “,I 

0n substituting here the constants Cl1 and C i2, found from the first four conditions of (3.1), we arrive 
at the equality 

(3.3) 

for determining Xb as well as the functions m (0 G m c 1) and the other parameters of the jets. The 
left-hand side of this equality is a bounded, continuous and monotonically increasing function of Xb. 
As Xb varies from zero (in the plane of symmetry) to plus infinity (on the boundary with the submerged 
space), it increases from a known negative value up to a positive value, which is also known. Equation 
(3.3) therefore has a unique root 0 G Xb s w with limiting values corresponding either to a single external 
jet (m = 0) or a single internal jet (m = 1). 

The internal jet is subcritical and the external jet is critical. In this case, from solutions (2.8) for a 
subcritical “internal” (lower) jet (k = l,~,~ < 1, 0 G x G xb < -) and solutions (2.13) for a critical 
“external” (upper) jet (k = 2,~*~ = 1,O < Xb G x d -), bounded vol and r.lroz are also only obtained 
when yt = 1 and x = S/A. Taking the solution from (2.13) with IZ = 1 < 3/2, we calculate (dxldp)b2 for 
it using (2.11). Together with solution (3.2) for the subcritical jet (k = l), this, when account is taken 
of the conditions on the axis and in the external boundary of the jet, gives 

mL”e1 c 
‘b 

3 yfo2 = ‘- l2 + 1, 
x 

Hence, as in the preceding case, from the conditions at the tangential discontinuity, we arrive at the 
following equation for the determining Xb 

The proof of the fact that, when 0 < yn < 1, it has a unique solution 0 < & < 00 is even simpler than 
in the case of Eq. (3.3). 

In both of the cases considered above, the solutions for al jet close to the axis are identical to the 
solution presented in Section 2. Hence, the first formula of (2.15), which expressesx, in terms of ln(A/Ao), 
holds, apart from a constant factor, and the equalizing with respect top and 19 is asymptotic. 

The internal jet is critical and the external jet is subcritical. This case is of particular interest as solution 
with vol # 0 and wo2 # 0 as well as with vo2 = 0 when wol # 0 cannot successfully be constructed for it. 
If it is assumed that vol = 0, then a solution in the neighbourhood of the singular point is constructed 
but not for any m and V,, < 1. Hence, this example demonstrates the limited nature of the approach 
being used. 

In the case of a critical internal jet (k = 1, p*l = 1, 0 d x d Xb 
(2.13) for vol corresponds to YIP 

c -), the bounded solution from 

ocXbgX 

2 3/2 and, in the case of the subcritical external jet (k = 2: pe2 < 1, 
c -), the bounded solution from (2.8) for vo2 corresponds to ~1~ G 1. The impossibility of 

choosing the same exponent in the variable x for both jets enables one (according to the stipulation 
made at the start of Section 3) to postulate that vol or vo2 is identically zero. We shall suppose that 
r+rol = 0 and take account of the fact that, in the A, 19 plane, the tangential discontinuity and the disrupted 
jet separate the internal jet from the &axis. This fact enables one, when representing the stream function 
of the internal jet in the form (2.6) with vol = 0, to take 8(A, 19) = A’ with a positive exponent 1 > 0, 
which is unknown in advance, as the distance to the singular point. In accordance with this 

vi = w,i(x)A’+ . . . . x =z +A--” (34 
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Substituting expression (3.4) into Eq. (2.10) and retaining the leading terms of the expansion, we 
arrive at the equation 

E(I-- a)~,~ + n( 1 -I- pz - 21)~~;~ i- “2x2w;‘l + (3q/2)2A3-2”$,‘, = 0 

When IZ f 3/z, its solutions have the form 

(3.5) 

The equation, which is obtained from (3.5) when II! = +, 

9(x2 + LJ*)v;i t 3(5 -41)x& + 41(1- l)W,r = 0 (3.7) 

has solutions, when 1 differs from 0 and 1, which are expressed in terms of Legendre functions with 
pure imaginary last variable (i/q). The case when 1 = 0 is interesting since, for such I, expansion (3.4) 
does not differ from (2.6) and, when E = 1, the solution of Eq. (3.7) is 

Wl,(X) = ~,,CGl~ x, 9) + c,,, 
3 n = -, 2 I= 1, x=19/A3’= 

Of the corresponding y1 different solutions of Eq. (3.5) for a flow with a critical internal jet and a 
subcritical external jet, only (3.6) is valid and, moreover, for any 1 > 0. In fact, by virtue of relations 
(3.4) and (3.6) and the condition in the plane of symmetry vi(O) = 0, for the internal we have 
CZ1 = 0 and 

V,(X) = A’w,,(x) = A’C,,x = C,@A’-‘, n > -, ; I>0 (3.8) 

In order to match this solution for the critical internal jet with the last solution of (2.8) with x = S/A 
for the subcritical external jet, it is necessary to put n - I = 1 in equality (3.8); the conditions which are 
imposed on y1 and I allow this. So, after some obvious changes in notation, we obtain 

From this and from equalities (2.5) and (2.11), we find 

(3.10) 

From relations (3.9) and (3.10) and conditions, (3.1), for determining &, we obtain the equation 

(I-m)P v e2 e2 -f-rnX b = 0 (3.11) 

When m > VJ(l + I&), it has a unique, bounded, positive root which determines the asymptotic 
character of the equalizing of these jets. If m = l&/(1 + V& the root of Eq. (3.1) Xb = 00, is of no 
interest. When m < Ve2/(1 + I&), Eq. (3.11) does not have positive roots. 

If the first solution of (2.8) ( n c 1) is taken for the external jet, then, within the framework of a similar 
approach, the solution w,(x) of (3.4) cannot be successfully joined to it for any m and Ye2 < 1. For 
~+J-:,=GO, v$en val # 0, solutions satisfying the last condition of (3.1) do not exist for any values of m 

e2 . 

Two critical jets. According to what has been said at the start of Section 2, the analysis of piecewise- 
homogeneous gas jets with the same physical properties and different critical pressures reduces to the 
analysis of a homogeneous jet. We shall therefore consider jets of two different gases; two perfect gases 
with adiabatic exponents icl and K~, for example, In this case,p ;h , =P*~ = 1 and, from all of the solutions 1 
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(2.5) and (2.13) whichlg ive bounded w1 and v2, only the last solution of (2.13) (n = 3/z) is suitable for 
which (~IY/+)~ = 3xbAb /2 on the tangential discontinuity. From this and from relations (2.11) and (2.13), 
when account is taken of a part of conditions (3.1), we obtain 

wo, = G,,I(O, x, 4,), wo2 = C,,QXb, x1 q2) + m* x=* *j/2 

Taking account of these last relations, on writing out condition (3.1) with the integration constants 
Cl1 and C12, which are determined by the conditions of (3.1) which have not been used up to now, we 
arrive at the equation 

I/6 

(P&b) = mI(xb? 0°7 q2) - (1 -m)r(O, xb, q1)tl(Xb) = O, (3.12) 

The left-hand side of Eq. (3.12) is a continuous function of ~b. When Xb varies from 0 to w, it decreases 
from the positive value m1(0,~, q2) to the negative value (m - 1)1(0,~, ql). Consequently, this equation 
has just a single root Xb, 0 c Xb < 00, and &, increases from 0 to 00 as m increases from 0 to 1. If 
q1 b q2, then the monotonicity of the decrease is demonstrated practically at once and there is one 
root. When q1 < q2, the proof of the uniqueness of the root is made difficult by the decrease of the 
factor kl(Xb). However, this factor, if it also increases, is insignificant. For instance, in the case of perfect 
gases with the limiting values of the adiabatic exponents: ~~ = 5/3 and ~~ = 1, it increases from 1 to 
1.096 as Xb changes from 0 to 00, Its small growth does not jmodify the monotonic decrease in (P(Xb) 
and the conclusion concerning the uniqueness of the root of Eq. (3.12) still holds. Irrespective of the 
dependence on the number of roots, formulae (2.16), which determine the finite abscissa of the cross- 
section of the equalizing of the jets with respect to pressure, the angle of inclination of the velocity and 
the Mach number still hold (with other factors accompanying AZ2 or 191”). 

Three critical jets. The case of three critical gas jets which differ in their physical properties (in the 
case of perfect gases, this means that they have different adiabatic exponents) can be treated in a similar 
manner. As in the preceding case, the flow in each jet is described by the last equation of (2.13) 
(n = 3/2). Suppose ml and m2 are the specified values of the stream function at the first (closest to the 
plane of symmetry) and at the second tangential discontinuity (0 s ml G m2 G l), and xbl G Xb2 are 
the values of the variable x corresponding to them. Then, to determine Xbl and x62 in a similar way to 
Eq. (3.12), we obtain the two equations 

(PI(xbl? xb2) =mlz(xb~~ xb2, q2)-(m2-mdz(07 xbl, ql)&(xb) = o 

(P2(xbl? xb2) = (m2-mi)~(xb2t 03? %) - (l -m2)z(xbl, xb2, q2)52(xb) = o 
(3.13) 

We also write out their corollary 

%(xbl, xb2) = md(xb27 Ooy %)-(l -m2)1(of xbl? ql)51(xb)g2(xb) = o l(3.14) 

which, as would be expected, reduces to Eq. (3.12) on “removal” of the middle jet. This is achieved if 
one puts 

m, = m2 = m, Xbl = Xb2 = xb 

in Eq. (3.14) and then replaces q3 with q2. On such removal of the middle jet (ml = m2, Xbl = Xb2) and 
the second equation of (3.13) is identically satisfied. Equation (3.12) can also be obtained from the first 
equation of (3.13) if we put 

in (3.13). 
The transition from three to two jets can also be accomplished using the corresponding substitutions 

in the second equation of (3.13). 
Suppose ml and m2 are specified and that 0 < ml < m2 < 1.. Then, when Xbl varies from 0 up to any 

Xb2 > 0, the sign Of (P1(Xbl, Xb2), that is, the left-hand side Of Eq. (3.13), changes, where Xbl and Xb2 
are continuous functions. If, however, Xb2 = 0, then, simultaneously, Xbl = 0, and, if Xb2 + 00, then 
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Fig. 2 

Xbl+Xbl- <=‘. Hence, in the Xbl, Xb2 plane, in which the upper half of the first quadrant (0 C Xbi < 
Xb2 G -), emerging from the origin of the coordinates and located above the line &i = Xb2 corresponds 
to the domain of permissible values, the line of the solutions of the first equation of (3.13): (Pi(&i, 
xb2) = 0, for the specified values of ml and m2 departs to infinity with respect to Xb2 and has a vertical 
asymptote (curve 1 in Fig. 2) 

When Xb2 varies from any &,r a 0 to M, the sign of (p&$,i, Xb2), that is, the left-hand side of the second 
eCpatiOn of (3.13) changes, 0 < Xb2 < 00 when Xbi = 0 and Xb2 3 * when Xbl -+ w. Starting out on 
the ordinate, the line of solutions of the second equation of (3.13): (P&&i, Xb2) = 0 for the specified 
ml and m2, which is also located above the line Xbl = Xb2, therefore departs to infinity both with respect 
to Xbi and &2 (curve 2 in Fig. 2). The point of intersection of curves I and 2 then gives the solution of 
both of equations (3.13). 

Its numerical solution also confirmed the validity of the conclusion which has been drawn concerning 
the roots of system (3.13). Here, the inverse problem was solved. We found ~$9” and & in accordance 
with the last formulae of (2.10) for the different adiabatic exponents ~1, ~~ and K~. Then, using formulae 
(3.6), the surfaces ml = ml(Xbl, Xb2) and m2 = m2(Xbl, Xb2) were constructed for Xbi and Xb2 belonging 
to the upper half of the first quadrant of the Xbi, Xb2 plane and which consequently satisfy the inequalities 

In accordance with what has been said earlier, the surfaces which have been constructed in all of the 
examples for which calculations have been carried out satisfied the conditions 0 c ml S m2 < 1, with 
an equality sign only when Xbi = X62. 

Hence, the equalizing of a three-layer critical jet with respect top and 6, as in the case of a two-layer 
jet, occurs at a finite distance from the nozzle exit. 

4. CONCLUSION 

The above analysis can be transferred practically without any change to other jet problems. In this sense, 
the problem considered earlier [5, 8-101 of the flow of a homogeneous, potential, sonic jet into a 
symmetric, wedge-like obstacle and its piecewise-potential generalization is the simplest. Problems of 
asymmetric efflux with an angle of inclination of the equalized jet 0, which is unknown in advance and 
undetermined within the framework of the approach used, are somewhat more complex. However, a 
knowledge of Be is not required to analyse the limiting properties. It suffices to put 6 = 0, - 0 and, also, 
to take account of the fact that, when there is no plane of symmetry, the integration constants are found 
from the conditions on the two external boundaries of the jet. At the same time, the example in Section 
3 with an internal critical jet and an external subcritical jet is indicative of the possible limited nature 
of this approach. 
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